Abstract second-order damped McKean-Vlasov stochastic evolution equations

نویسندگان

  • N. I. Mahmudov
  • Mark A. McKibben
چکیده

second-order damped McKean-Vlasov stochastic evolution equations N.I. Mahmudov aand M.A. McKibben b,∗ aDepartment of Mathematics, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, TURKEY bGoucher College, Mathematics and Computer Science Department, Baltimore, MD 21204, U S A Abstract We establish results concerning the global existence, uniqueness, approximate and exact controllability of mild solutions for a class of abstract second-order stochastic evolution equations in a real separable Hilbert space in which we allow the nonlinearities at a given time t to depend not only on the state of the solution at time t, but also on the corresponding probability distribution at time t. First-order equations of McKean-Vlasov type were first analyzed in the finite dimensional setting when studying diffusion processes, and then subsequently extended to the Hilbert space setting. The current manuscript provides a formulation of such results for second-order problems. Examples illustrating the applicability of the general theory are also provided.We establish results concerning the global existence, uniqueness, approximate and exact controllability of mild solutions for a class of abstract second-order stochastic evolution equations in a real separable Hilbert space in which we allow the nonlinearities at a given time t to depend not only on the state of the solution at time t, but also on the corresponding probability distribution at time t. First-order equations of McKean-Vlasov type were first analyzed in the finite dimensional setting when studying diffusion processes, and then subsequently extended to the Hilbert space setting. The current manuscript provides a formulation of such results for second-order problems. Examples illustrating the applicability of the general theory are also provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Large Population Stochastic Dynamic Games: Closed-loop Mckean-vlasov Systems and the Nash Certainty Equivalence Principle

Abstract. We consider stochastic dynamic games in large population conditions where multiclass agents are weakly coupled via their individual dynamics and costs. We approach this large population game problem by the so-called Nash Certainty Equivalence (NCE) Principle which leads to a decentralized control synthesis. The McKean-Vlasov NCE method presented in this paper has a close connection wi...

متن کامل

General existence results for abstract McKean-Vlasov stochastic equations with variable delay

Results concerning the global existence and uniqueness of mild solutions for a class of first-order abstract stochastic integro-differential equations with variable delay in a real separable Hilbert space in which we allow the nonlinearities at a given time t to depend not only on the state of the solution at time t, but also on the corresponding probability distribution at time t are establish...

متن کامل

Workshop on deterministic and stochastic partial differential equations

The Master equation is an infinite dimensional partial differential equation in a state space comprising Euclidean vectors and probability measures. It was introduced by Lasry and Lions for the study of Mean Field Games. We derive this Master Equation from a special Ito formula based on a non-standard differential calculus for functions of probability measures. If time permits, we shall also de...

متن کامل

A stochastic particle method for the McKean-Vlasov and the Burgers equation

In this paper we introduce and analyze a stochastic particle method for the McKean-Vlasov and the Burgers equation; the construction and error analysis are based upon the theory of the propagation of chaos for interacting particle systems. Our objective is three-fold. First, we consider a McKean-Vlasov equation in [0, T ] × R with sufficiently smooth kernels, and the PDEs giving the distributio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015